Hard Exclusive Reactions

Caroline Riedl

hermes

Milos, Greece, 30.9.2009

(1)

EINN09: Electromagnetic Interactions with Nucleons and Nuclei

$ep \rightarrow epV$ or $ep \rightarrow ep\gamma$ (DVCS)

High energy factorization

Universal dipole interactions

General Sector General Sector Sec

$$\bigcirc$$
 Scale: $Q^2+m_{
m V}^2$

Collinear factorization

Parameterization of non-perturbative nucleonic structure

Information on parton-parton correlations

WM: proven only for σ_{Longitudinal}

Kinematic Landscape

Caroline Riedl (DESY), EINN09 at Milos, 30.9.2009

$\gamma^{(*)}p \rightarrow \gamma Y$ Photoproduction

$ep \rightarrow ep \Upsilon(1S)$ Photoproduction

ep→epV Pomeron trajectories

 $\alpha'_{P} = (0.126 \pm 0.013 \pm 0.012) \text{ GeV}^{-2}$

smaller than canonical soft pomeron

 $\alpha'_{P} = (0.164 \pm 0.028 \pm 0.030) \text{ GeV}^{-2}$

hard pomeron known to be smaller than canonical soft pomeron Caroline Riedl (DESY), EINN09 at Milos, 30.9.2009

$ep \rightarrow ep\gamma$ cross-section

Transverse extension of partons

HERA: DVCS cross section differential in t Extract dσ/dt in bins of Q² and W

 \bigcirc Ansatz d σ /dt \propto exp(-b|t|)

t slope raise average impact parameter b
 Description of transverse extension of partons
 Size of proton core (w/o soft periphery)

$$\sqrt{\langle r_T^2 \rangle} = (0.65 \pm 0.02) \text{ fm} \text{ at } x_{\text{B}} = 10^{-3}$$

HERA: t slopes

Itl [GeV²]

Generalized Parton Distributions

	leading twist, quark chirality conserving, spin-1/2		
	f(quark helicity) 🖙	×	~
	nucleon spin flip 🖗	photon: J ^P =1 ⁻ (DVCS)	
	×	н	Ĥ
	~	E	Ĩ
11		J ^P =1 ⁻ mesons	J ^P =0 ⁻ mesons

"Nucleon tomography"

PDFs: longitudinal momentum forward limit $\xi=0, t=0: H^q(x, 0, 0) = q(x)$

Form Factors: transverse position moments of GPDs: $\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$

Nucleonic Spin: total angular momentum Ji relation:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

Deeply Virtual Compton Scattering

DVCS @ fixed target experiments

The data are subject to a harmonic fit w.r.t. the azimuthal angle(s) ϕ (and ϕ_S) to obtain **azimuthal asymmetries**

DVCS @ fixed target experiments

DVCS cross-section in the valence quark region

- Indication of factorization down to Q²=2 GeV²
- GPDs accessible at moderate Q²

Caroline Riedl (DESY), EINN09 at Milos, 30.9.2009

< helicity-independent cross section

14

DVCS azimuthal amplitudes HERMES (prelim.)

(A) Beam charge asymmetry: **GPD H**

Projects out

 $Im(\tau_{\rm DVCS})$

 $\Re e(\tau_{\rm DVCS})$

(C) Transverse target spin asymmetry: GPD E from proton target

(D) Longitudinal target spin asymmetry: GPD H

HERA / H1: Beam Charge Asymmetry in DVCS

Ratio $\varrho = \mathbf{Re}(\tau_{\text{DVCS}}) / \mathbf{Im}(\tau_{\text{DVCS}})$ $\bigcirc \varrho = 0.20 \pm 0.05(\text{stat}) \pm 0.08(\text{sys})$

In good agreement with calculation from dispersion relation

Access to the total angular momentum of quarks

- Hall-A at JLab, deuteron target
- Quasi-elastic proton contribution subtracted from deuteron signal
- Beam-helicity asymmetry:

 $\vec{e} n \rightarrow e n \gamma$: sensitive to GPD E_q

Total angular momentum of quarks **J**q:

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

Access to the total angular momentum of quarks

- Hall-A at JLab, deuteron target
- Quasi-elastic proton contribution subtracted from deuteron signal
- Beam-helicity asymmetry:

 $\vec{e} \cdot n \rightarrow e \cdot n \gamma$: sensitive to GPD E_q Total angular momentum of quarks J_q :

$$J_{q} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$$

Caveat: model-dependent constraint on J_u+k·J_d. GPD models are far from describing all available data equally well !!

Q⁰ Spin Density **Matrix Elements**

Cross-section for exclusive ϱ^0 leptoproduction:

 $\frac{d\sigma}{dx_B \, dQ^2 \, dt} W(x_B, Q^2, t, \phi, \phi_S, \varphi, \vartheta)$

W parametrized by **Spin Density Matrix Elements** (SDMEs)

SDMEs describe helicity transfer from the γ* to the Q⁰:

Solution s-channel helicity conservation (SCHC) $L \rightarrow L, T \rightarrow T$

S-channel helicity violation

More precision data from HERA

Aut in $ep^{\uparrow} \rightarrow ep Q^{0}$

 \bigcirc **A**_{UT}: depends linearly on GPDs (E_q+E_{g)}, no suppression w.r.t. GPD H

Exclusive ω A_{UT}

 \bigcirc u- and d-quarks in GPD E do not cancel: $A_{UT} \propto Im[(2E^u-E^d) / (2H^u-H^d)]$ (≈-0.10 expected)

 \bigcirc HERMES: -0.22 ± 0.16 ± 0.11

Summary: Hard Exclusive Reactions

Wide spectrum of measurements of cross sections and azimuthal asymmetries

- Hard exclusive reactions as testing ground for QCD
 Universal t slope
- Access to Generalized Parton Distributions
 - Different quantum numbers of final state select different GPDs
 - GPDs provide 3-dimensional picture of nucleons
 - GPDs allow (in principle) to constrain total angular momentum of quarks

Thanks to everybody who delivered input to this talk!!